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The .results of a "Commonality Analysis" yield measures of the

extent to.which each variable contributes to the explanation of
variance i; the dependent variagle independently of the other
variables in the analysis. Such an analysis also yieids measures
of the extent to which two or more of the variables share some of
their explanatory power. fﬂis shared explanatory power may arise
from the functional interp}ay of the variables over time and/or
merely from their Boint occuxrence. For example, one might observe
that children from moreé affluent families tend to attend schools
that are bettar'staffgd and tend Eo_do better on standardized
achievement. tests than their less affluent counterparts. Such
observations would produce a degree of correlation among these
three classes of variables so that the effects of affluence and
school type on achie&ément would be difficult to disentangle.
However, for heuristic.reasons an analyst might waﬁi to- attempt to
disentangle their "possible effects". This paper includes-.one.such

technique and some illustrative applications.

We have called this technique "Reverse Commonality' because it

takes as given a set of commonality coefficients, from them reproduces

all\éossible squared multiple correlations (RSQ's) and then attempts to

produce one or more sets of regressor (independent) variable inter-

correlations th§f are cousistent with these RSQ's. When the commonality
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coefficients have been obtained from real data,one admissible set of
regressor intercorrelations will be obtained which corresponds,

within rounding error, to the actual or real data.intercorrelétion39

//

When manipulat?d coefficients are read in to the program; the computer
will inform the analyst as to the number of admissible solutions. 1f
any exist tﬁe algorithm will print out the regressor int@rcorre;ations, their
standardized regression ﬁeights ;nd the variance explained by the
regression.
«  Before proceeding with the details of the technique we shall
3 develop the discussion around a three variable commonality analysis.

Later, greater numbers of variables will be dealt with.

Beaton (1973) has synthesfzed the work of other investigators on
commonality and has extended and clarified its préperties. Consequently,
we shall deal only briefly herg with its ;atugi for the three variable
case. Given three regéessor variables Xj, X9 and X3, their relationship
with a dependent variable Y can be expressed in terms of all of their
possible squared simple and multiple correlations/with Y as follows:

"RSQ (X1); BSQ (X); RSQ (X3); RSQ (X1Xp); RSQ (X1X3); RSQ (X2X2);
RSQ (X3X2X3). For m variables there are 2™ - 1 correlations that can
be obtained. Commonality analysis merely forms sums or differences of

these RSQ's so that the Y variance explained by any X{ can be expressed

in terms of the proportion it has in common with the other X's plus what

it brings uniquely to the analysis.,* These latter unique temms can be

obtained as follows: .
q4 -
*Beaton (1973) has a matrix formulation of this computational rationale
for the general case.
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(1) UG = RSQ (yXpXa) = RSQ (Xp¥s)

- (2), U(Xp) = RSQ (X1X,X3) - RSQ (¥1X3)

(3) U(X3) = RSQ (X;X,X,) - RSQ-(jXgy —

The second order commonality coefficients are ébtained by:

(4) C(X1Xp) = RSQ (X1XpX3) ~ RSQ (X3) - U(X)) - U(Xp)

"

(5) C(yX3) = RS (KkpXz) - RSQ (Xp) - U(X;) - U(X3)

s o e i e wes at

(6) C(XyX3) =-RSQ (X1XpX3) - RSQ (X1) - U(Xy) - U(X3)
while ,the third order‘ coefficient istobtained by: '
(7) C(X1XpX3) = RSQ (X;XpX3) - C(X1Xp) - C(XjX3) - C(XpX3)
- U - U - UK o
By virtue of this foregoing, the RSQ's for Xy, X, and X3

can each be expressed as a sum of their commonality coefficients as

follows: ’ .

<

- (8). RSQ(Xl) = C(X)XpX3) + C(X1X2) + C(X1X3) + U(X1)
(9) qu(xz) = C(&XpK3) + C(X;Xp) + C(X,X3) + U(X))
(10) RSQ(X3) = C(X1XpX3) + C(X1X3) + C(XpX3) + UX3)
and the total RSQ is given.by: ,
(1.1) RSQ (X1XpX3) = G(X1XpX3) + C(X1Xp) + C(X;X3) + c‘(x2x3)

- ‘

+ tr(xl) + U(xz)’ + U(X,)
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Arranging these in tabular form we have

# v - —1
: 1 2 3 '
U(Xi)' ‘a ) c
: d -
| C(X X,) : d
I C(X1X3) e - = e
L C(%,X,) - £ £ i
‘ C(X1X9%y) | & g8 - 8 -
- where the alphabetic entries represent empirically observed values and the /'

values in each column sﬁa—tantﬁe"§SQ‘for the variable number heading the
column., For example, RSQ (X;) = a + d + e + g (note that tde empirically’
observeduvalue fpr a coefficient is repeated under its respective
column as appropriate). These empirically observed values can be
manipulated in a number of different ways and then submitted to the
algo;ith@ _developed by Beaton and,described in Appendix A, to see if |
they yield a consistent set of correlations. The remainder of thia -
paper-deals with the results of the systematic application of this.
Reverse Commonality procedure. -
1. Three Variable Reverse Commonality for a Fixed Level of Explained
Variation .
' The results of a three variable comdonality analysis are_given in
Table 1.1. The variables used here are composites taken from Mayeske,
et. al. (1974). The first variable is a weighted* sum of a student's

<

values on his Socio-Economic Status and Family Structure indices as

o i e

* The weights are taken from the first Principal Component of the
variables under consideration.

ERIC o ' 6 : :
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well as a value for his Ethnic Group* and Boy—girl/group** membership.
The second variable is a weighted sum of his scores on four attitudinal

and motivational indices*** while the third variable is the average
achievement of students in the grade level that one attends school with.
These three variables are called respectively: Social Backgrdund (SB);

Motivationel (MIVTH) ; aﬁd School (SCH) factors. The dependent variable,

Y, is each student'sscore on an Achievement composite.T

¥

* Whites were scored highest, Oriental-Americans intermediate, while all
others were scored low,

*Girls were scored highest, .

***These are: Expectations for Excellence; Attitude Toward Life; Educational
Plans and Desires; and, Study Habits, For details see Mayeske, et. al.,

1972.

tsee Mayeske, et, all, 1972 for more details on the nature of this
composite. -

Ledes o
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Table 1,1, - Commonality Analysis of Achievement With Social Background,
Motivational and School Factors¥*

/

1

, ‘ SB
U(Xy) .0236
C(X1X7) «0654
C(X1X3) : .1025
C(X2X3)

C(xlxéXB) .1117
RSQKXi) ST .}032

- RSQ(K%;%3)

% There are 123,305 students and
these analyses.

Given this table of commonality coefficients we may ask:

do the regressor intercorrelations produced from these coefficients

compare‘with those actually obse

given in the first row of Table 1.2 with their reproduced values (R)

directly below them.

e 00_71

1117
.2008

4417

théir 2370 schools included in

rved"?

The observed (0) values are

"How

f

v

r

et st e
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Tabkle 1.2, - Observed (0) and Reproduced (R) Regressor Intercorrelations
for SB, MIVIN and SCH and their Correlations With Achievement - —~

: B SB MIVIN SCH _ACHIEVEMENT

Social Background (SB) 0 1 .5879 5219 5506
L - R 1 .5879 .5219 - .5506
Motivation (MIVIN) 0 S 1 2623 | L4481
R ] / .2623 4480
School Factors (SCH) O _ o 1 5674
' R - \ 1 .5675

. | | ] |

1

Inspection of the values shows them to be identical to the third
. decimayldigit in every case and to the fouéth decimal digit in almost every
case with the errors occurring in the regressor-yegressand correlations
(i.e., dolumn 4), Clearly, theT fo; the case qf these tﬁree regressors, éhe

algorithun reproducis the correlations to a satisfactory
: ;

i

- degree. of accuracy.
Next we ma, ask: '"If the épefficients in Tablé 1.1 are mqnipﬁlated
in'some simple manner, might they yield a consistent set of regressor
correlations?" The simplest change that suggests itself is to get rid

of the negaFiVe value. To do this we shall assume that it arose from the

variable called MIVIN and its relationship with ‘the other variables.
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e

- Social Background (SB) O 1 .5879 .5219 ' .5506
Rl 1 L5556 §5235 5442

" Motivation (MIVIN) 0 L1 .2623 4481
“ R 1 .2820 L4480

School Factors (SCH) 0 1 5674
r| 1 .5737

-8~

»

"By adding the value of -,0071 to the second order coefficient for

SB, MIVIN (viz., C(X;X9)) thereby réducing it to .0583, and'septing

‘the C(XpX3) value to iéro, ve obtaén a simplified set of coefficients.

The application of the algoxithm showea that a single consistent set
of intercorrelations could be produced which differed very little from

~

the observed values. They are compared in Table 1.3. ‘ -

L |

Table 1.3. Observed| (0) Correlations Compared With Those Reproduced (R)
From Manipulated Commonalities ..

L]

® —

l

The application of this algorithm ra%ses two main concerns: (1)
how to reduc; the shee; volume of'inpu; and output, that we have to
assimilate wken the;e is more than one admissible solution (after
all we dén't want to have to resort to a new table comparing the
0's and‘the R's each time); and, (25 bo&.to manipulate the commonality
coefficients in a.systegatic way. ‘%et us deal with each of these

in turn. . \




- the volume of outpnt more manageable we shall arrange the values

C(XzX3 )

of these values,

U(X3) \

€(X1X3)

-9-

4
)

To make the volume of input more comprehensible and to'render

for our commonality coefficients in columnar form as follows:

OBSERVED VALUES TRANSFORMED

T T Ty

1

* o 000000

{Observed T3

U(X;) 2

UKXz)

C(X1Xp) |

C(X1X9X3)
Q(X,X,X
RSQ (X1 X,X3)

Number of
Admigsible
Solutions

\

The first column will contain the observed values while the
succeeding columns will contain various transformatiéns or manipulations

There are two ways to perform these transformations.

The way that we have selected might be called, 'sequential resclution'.

\

By this we mean that the higher order commonality values are split up

and pushed into the pext lodgr order each time. For each such trans-

formation the algorithm indiéates the number of admissible solutions¥,

<
o

!
*The number of admissible solutfons is affected by the tolerance limits
one sets (see Appendix A). Generally, the more lax this. eriterion is,
the greater are thHe number of admissible solutions. Almost without

exception, we have used a limit of .005 or less, (see Appendix A),
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(U(X1)'s) without passing them through the intermediate ofders,™ For

_ them up so that each variable gets an equal share. 1In Tgble 1.4 **the

L2

el - T
-10- . T
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A second way which might be called "Pypass resolution", splits

up the higher order values and releg;teé them directly to the uniques

large numbers of variables (five or more) these two approacheé may
not yield the same resolutions (viz., oﬁqg all the values have been

relegated to the uniqueness, the uniqué values may differ for the’

two techniques). We have chosen the former rather than the latsgr

because we have often found the results of each step in a seque?ce
A\ -

to be informative.* ! .l =
i
7 A'

’
L3

What kinds of4theor} then might we use as a guide to our sequential

\

resolutions, The one that most readily-comes to mind is a’ 'state of

{

ignorance" theory. Such a theory says that we don't know how best to

allocate thé higher order values and therefore that we shall split

transformations under the columns numbered 2 and 3 represent these

r

resolutions (we have already examined results for the observed
AN

commonaliities and those for the figst transz:mation). Our procedure

) : \
for these was as follows: x e

z

* We do not know which one of these techniqués is optimal.
*%x In order to facilitate the paper's readability the reader
is advised to unstaple the pages and/pull out the tables

e

that are being referred to. e

iz
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n"State of Ignorance" Transformations

- /‘
-

— Take the simplified values from the first tyansformation e

shall use the simplified commonalities for these and all succeeding

trans forpations);t

\
~ .
T2 - Split C(X;X,X3) into 1/3's and put 1/3 on each of

C(X;Xy), C(X;X3) and C(X,X,)

v . T3 - Split each of the C(Xin)\s(as modified in T2) in half and put 1/2

AT [ S

in each of its relevant uniques (e 8.y X C(x X2) is added

to U(Xl) and the other half to~U(X2), perform similar
‘ operations for C(xlxa) with, respect to U(Xl) and U(X3),

and . for C(XpX3) with respect to U(X,) -and U(X3))

Fd

" We can see from inspection of Table 1.4 that T2 did not yield
‘any admrssible solutions (prooably because of the large C(XpX3) value
‘producedj\@hereas T3 yielded five. The correlations,obtained from
" these five solutions are given in Table 1.5 along with the inter-~
" correlations fgr Ehe\fifst traqsformafion and those obtained from the

s,
i ‘obsenved valuesf For the fiﬁst solution, (3A),the regressor inter- \\

correlations are all zero. Each regressor correlation takes on a very high

o — iy
? o

.‘\

~ value in turn for the next three/sorutions\aﬁlle~thg others remain low
T

-

whereas,for the last solution, all the values are high. \Eﬁﬁﬁination of

N the regression coefficients given in Table 1.6 show that they vary in T

magnitude enormously cver the five solutions. For example, variable 1

(Social Background) takes on a high value of 2.03 and a low of ~ 11.25.

* We may recall that the regressor-regressand correlations are fixed for
any single resolution (or transfcrmation)

B []i\ﬁ: : 13

“ /
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Variable 2 (Motivation) ranges from 4.76 down to -1.68 while VariaK{e 3
‘ /

/
(School factors) remains positive all the time but ranges from a low of

/745 to a high of 7.06. Clearly then for regressor correlations that

i
4 '

. yield solutions consistent with the fixed regfessor-fegressand relat‘in—

v

ships given in Table 1ls (those are rl4, r24 & r34), their regression

coefficients may differ over an enormously, for a fixed RSQ (X;X,X;)

of .4417. Our "state of ignorance" theory then allows a great deal of

variation in the admissible solutions. P

i
i ’
Theory Guided Transforngteﬁs. ‘

Let us consider next howéa few content oriented theories might hélp
us resolve these values. Thef\are: ‘
T4 - All the variance that is.accounted for by SB (Soeial . .
Background) is also caused by it. Therefore, take every'

higher order coefficient that has a one in its subscript

and add it'§ value to the unique value for SB (viz. add

them to U‘(%l)') . | ,

|

T5 ~ All the variance that is accounted for by MIVIN (Motivational
factors) is also caused by it. Therefore, take every higher
oréer'coefficient that has a 2 in its subscript and add its

value to the unique value for MTVIN (viz. add them to U(Xs)) .
]

T6 ~ All the variance that is accounted for by SCH (School
factors). is also caused by it. Therefore, take every higher
order coefficient that has a 3 in its subscript and add its

value to the unique value for SCH (viz.add them to U(X3)).

14
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Inspection of Table 1.4 shows that these transformations have 5, 2
and 2 admissxble solutions respectively. Let us examine their correla-

tions in Table 1.5 and their regression coefficients in Table 1.6.

Examination of Table 1.5 shows that the solutions for Tﬁ‘(our”every5 -
thing associated with Social Background belongs to Social Background T
theory) vary from zero through .58 for rl2, and to about .9 folr rl3 and ‘
r23. Clearly for these regressor-regressand relationsnins:tha correlations
betwéen SCH (School factors)rand other factors (either SB or MIVIN) cana
vary to a greater extant than can those between SB and MIVIN. For' T5
(our everything associated with MTVTN.Belongs to MTVIN theory) the : ‘\
correlations between SB and MTVTN and between MTVTN and SCH stay null while |
that between SB and SCH varies from a low of .47 to a high of about .9.

Not only are these solutions fewer in number but they are also nore compact
(i.e. less variable). For T6 (our everything that is associated with SCH
belongs to SCH theory) the two solutions are aISOfcpmpact with the SCH-

related correlations staying null while those for SB and MTVIN range from

about .52 almost up to 1.0.

. !
In examining the behavior of the.regression, coefficients for these
:solutions, given in Table 1.6, we can note for T4 that they range from:
a low of about .5 to a high of about 1.5 for SB; a high of about .3 for

MIVIN to a'low of about-.3; and, from a low of ~1.3 for SCH to a nigh of

-
1

about .6. Clearly then the variability is greater over this set of
solutions for SCH than for any of the others. For TS the variability is
least for MTVIN and greatest for SB. For T6 the variability is null for
SCH but very large for SB and MIVIN. What these rgsults along with those

@  in Tables 1.4 and 1.5 suggest is that the variable or variables which have

15
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Table 1.4 Transformed Commopality Values and Their Number of Admissible
1.

—

Solutions
TRANSFORMATIONS
Commonality . ) . i
Coefficients* Observed 1 2 -3 4 5 6 |
> - . " f
U(Xp) .023¢*  °.0236  .0236  .1412  .2961 .0236 .0236 |
U(Xp) 0307 L0307 0307 L0971  .0307 .2007 0307 |
U(X3) 1149 1149 L1149 L2034 L1149 L1149 3291
C(X1X) .0654 .0583 .0955 0 0 o .0583"
C(X1X3) .1025 .1025 . .1397 0 o Jl025 8
i
C®XoX3) -.0071 0 0372 - 0 0 0 0
C(X1XoX3) | 1117 a7 .0 0 0 0: 0
\ > z’
_ RSQ(XjXpXs3) L4417 G617 L4A16 L4417 L4417 . L4417 L4417
. |
NUMBER OF |
SOLUTIONS 1 1 NONE s 5 2 2] |
»
TRANSFORMATIONS
Commonality : / /
Coefficients* 7 8 9 :
g i <
U(xXy) .2111 .0236 L0731 . _{ /
U(X5) 1157 .0307 .0546 \ )
U(X4) .1149 1149 1498 , /
'C(X1X5) 0 .0769 .0385 / [
C(X;X3) 0 1211 .0606 |
13
C(xXy) 0 0186  .0093 /
C(X1X,X3) 0 .0558  .0558 41'
RSQ(X1XoXs3) 4417 4416 L4417 /
NUMBER OF . | |
SOLUTIONS 3 NONE NONE
*VARTABLES 'Y '
Q 1 ~ Social Background (SB) |
ERIC 2 - Motivation (MIVIN) / : ]
AT 3 - School (SCH) 16 /
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. Table 1.5 Regressor and Regressand Correlations Reproduced ‘from
Commonalities T '

TRANSFORMATIONS
r* ~ Observed 1 3A 3B
12 .5879 .5556 0 ..9827
13 “.5219 . .5235 o 0
% - .5506 5442 | .3758 .3758
23 .2623 2820 | 0 0
26 L4480 L4480 |..3116 ., .3116
34 .5675 .5737 | .4510 4510
r 4A & | 4 4D
127 ‘0 .5835 0 0
13" - 0 0 .8976 0
14 5442 5442 5442 .5442
23 o 0 0 8158
24 .1752 1752 .1752 .1752
3% - .3390 .3390  .3390 .3390
r 6A 6B 7A 7B
12 .5192 9973 0 9564
13 0 0 0 0
14 .2862 .2862 | .4595 4595
23 0 0 /0 0
24 . .2983 .2983 | .3402 .3402
34 .5737 .5737 | .3389 .3389
* *VARTABLES

1 -~ Social Background (SB)
o 2 - Motivation  (MIVIN)
‘ 3 « School (SCH)
/ Q ) .
E

17
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Table 1.6 Regression Coefficients Computed .from Reproduced Regressor—
Regressand Correlations .

TRANSFORMATIONS
Br Observed 1 A1 3B 3c D 3E
1 .2152 2146 | .3758  2.0305 -2.0818  .3758  -11.2492
2 .2170. .2158 | .3116 -1.6838 .3116 -.8809 4.7600
3 3982 . 4005 | .4510  .4510  2.4986 1.2749 . 7.0633
/
\\ B 4A 4B _4C 4D 4E 5A ' 5B
R | .5442 6700 1.234 542 1.5198 | 1741 -.3577
2 .1752 -.2158  .1752 -.3030  .3731 4480 4480
3 - .3390 .3390 -.7688  .5863 _ -1.3295 | .3842 .7893
' B _ 6A 6B 7A 7B 7C
1 1797 1-2.082 | .4595 1.5735“ 1.5569
2 2050 2.375 | .3402 -1.1652 .3402 Q
3 .5737 5737 | .3389  .3389 -1.1487

*VARTABLES

1 ~ Social Background (SB)
2 - Motivation (MTVTN)
3 - School (SCH)
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the lﬁfgest unique values after resolution tend to show less variability

in their regression coefficients than those with lower unique values--a

“

not surprising result.

/ . \

Mixed Transformations

It may also be meaningfﬁl to perform mixed transfb?mafions - that

is - transformations that are guided by a theory but at\sqints where the

theory does not provide giidance a random rationale can be adopted. Some

of these are: ’
T7 - The SCH factp?s should have only the value of their

ué{queness (U(£3)) but we do -not know how the values
/ for the higher order coefficients should be spread

among SB & MTVTN. Therefore, split ékX1X2X3) into 1/3

. and add this value to each Qf Fbe second order coefficients
(umpmﬁn.TmnwdmuanEdtancmﬁQ
and all of the new C(X;X3). Similarly add to U(Xp) half

\

’ H
of the new.c(xlxz) %pp\all of the new C(XoX3).

T8 - This approach éostul tes that only half of the variance we
observe in the thitd order can be resolved into the second
orders, whereas fhe rest should remain where it is. There-
fore, take half of C(X1X2¥3), split this Value‘into 1/3's

Si.e. a value of 1/6 of c(xlxikg)) and add this much to each

oo of the C(Xin)'s.

T9 - This approach takes one half of the newly created second

order'valhes from T8, splits them in one-half (i.e. 1/4

of C(X;X9), 1/4 of C(XjXg)etc.) and adds.each of these to

e
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its appropriate uniqueness. That is, U(X;) gets 1/4
of C(X1Xy) and 1/4 of C(X1X3); U(Xp) gets 1/4 of

E(X;X,) and 1/4 of C(XpX3), etc.

Inspection of Table 1.4 shows that T7 yielded three admissible solu-
tions. .whereas T8 and T9 did not yield any. These results along with those
for T2 suggest that the$ries about oniy part of the shared variance are not

“as likely to yield .admissible solutions. “~

3
Let us examine the nature of the solutions to T7 in Tables 1.5 and 1.6. :
The correlagfons in Table 1.5 show that the values for 'SB and MTVIN and e
SB and)SCH range from zero to about .95 but never simutaneously, while )
the I9erelation between MTVIN and SCH stays at zero.,The regression
co%éficients for the T7 solutions,in Table 1.6,vary from a low of about .45
ta/a high of about 1.6 for SB,wheraas those for MTVIN vary downward from
.34 to ~1. 16 and those for SCH vary from about «34 down to ~1.15. However,
-the coefficients for MT%TN take on a slightly greater range tham that of

/

’SCH while both of those take on a greater range than those of SB.

’

L . - B

/ In this section we have examined a number of diffarent ways that might

/l be used to resolve higher order commonality vafues into their low;r orders
for a fixed level of variance explained,(viz./a.égxed value of the squared
multiple cosrelation). In th? next section we examine results obtained from
varying the level of explained variance. B

2. Three Variable Reverse Commonality for Varying Levels of Explained
Variation .

/ ' The algorithm's 'results may show that for a fixed level of variance

explained (i.e. in our case a fixed value of- RSQ (X1XQX3)) an analysts

i< | <0
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particular resolution does not yield any admissible solutions. As a

consequence, the analyst may want to explore neighbofing levels to see

if they yield solutions. In this section we examine results in which the

level of explained variance is systematically varied.l

! These comquations were performed by taking the simplified:commonalities
(called T1 in Table 1.&), dividing them by their RSQ (X1X2X3) value of .4417
so that tﬁey sum to 1.00, and tﬁen scaling these v;lues by multiplying them

'by:. .13 .2% .3; 43 .55 .63 .75 .83 :9;~1.0 respectively ; khe;e values are
-given in Table 2.1. We can observe that eqch of these yielded one and only
one admissible solution.. Examigation'of the regressor iutercorrelatioﬁs sho?ed
that they stgyed the-sgme for each scaling condition (these values are given
in Table 1.5 under column T1). What did change Weré the régressor-regressand
correlations fog the different scalfhg conditiong. These values, given in
Table 2.2, §ﬁoﬁ“a progressive increase a; the scaling factor approached
1.0. The regression coefficients, givep in Table 2.3, also increasedg
‘progfessively‘in magnitude as the scéling:factor increaseé. Cleariy then
for the commonality proportions fixed on here, a wide range of RSQ (X1X2X3)'s

will yield admissible solutions.




COMMONALITY OBSERVED
COEFFICIENTS* SIMPLIFIED _ .1 .2 .3 A ] .6
U(x;) 0236 .0053  .0107 .0160  .0214  .0267 .0321
U(X) .0307 0069  .0139 .0208  .0278  .0348. .0417
U(X3) 1149 0260  .0520 .0780  .1040  .1301 \\,\1561‘
C(X1X,) .0583 0132 .0264 .0396  .0528 .0660!\. .0792
. C(X1X3) .1025 .0232  .0464 0696  .0928 1161 .1393
C(XoX3) - o 0 0 0 0 oyr/ 0
C (X1XX5) 1117 0253 .0506 .0759  .1011  .1265  .1517
RSQ(X1X9X3) 4417 0999 .2000 2999  .3999" .5600 .6001
NUMBER OF - : N _
SOLUTIONS 1 1 1 1 1 1. 1~
COMMONALTTY

COEFFICIENTS#* oJ .8 .9 1,0 . '

U(X;) V .0374 .0427  .0481  .0534 \

U(Xp) .0486 .0556  .0626  .0695

U(X3) .1821 .2081 2341  .2601

C(XiKp) = .0924 .1056  .1188  .1320

C(X1X2) .1625 .1857 . .2089 2321 ’
C(XoX3) 0 0 o o /
C(X1X5X3) 1770 .2023 2276  .2529 :
RSQ(X1XoX3) * .7000 .8000  .9001 1.0000

NUMBER OF

SOLUTIONS 1 1 1 ).

AVARTABLES
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Table 2.1 Fixed Commonality Proportions and Their Number of Admissible

Solutions for Increasing Levels of Variance Explained

TRANSFORMATIONS

1 - Social Background (SB)
2 ~ Motivation (MTVIN)
. 3 - School (SCH)
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I

Table—2.2 Regress or -Regressand Correlations Reproduéed from Fixed
Commonality Proportions and Varying Levels of’Variance Explained

1 - Social Background (SB)
2 ~ Motivation (MTVIN)
3 -~ School (SCH)

. TRANSFORMATIONS .
. OBSERVED : . .
r SIMPLIFIED .1 .2 .3 .4 5 .6 .7
‘ 14 5442 2588 .3662 4484 L5178 .5791 -.6343  .6851
24 L4480 2131 -.3015 3692 4263 4768 5221  .5639
34 - 5737 .2729  .3860  .4728 .5458  .6105 .6687  .7222
¥ .8 .9 1.0-
14 .7323 .7768 - .8188 .
2 6029 .6395 L6741
34 7721 .8189  .8632
*VARTABLES

S AR
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"rable 2.3
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Regression Coefficients Computed from Admissible Solutions for

1 - Social Background (SB) .
2 ~ Motivation (MIVTN) ) .
3 - School (SCH)

/

Fixed Commonality Proportions and Varying Levels of Variance
Explained ) . ot : |
\ . W
| TRANSFORMATTONS
, OBSERVED Vo
B* SIMPLIFIED .1 .2 .3 KA .5 .6 i
1 .2146 .1019 L1445 .1768 .2043  ,2283 .2502 . .2702
2 .2158 .1025 1452 .1778 . 2054 .2298 .2515 .2716
3 .4005 .1906 .2694 .3300 .3810 L4262 4668 ‘.5042
B .8 .9 1.0 .
' 1 .ZBBZ © .3063 .3229
1 2 .2905 .3082 .3248
3 .5390 .5716 .6026
*VARTABLES
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We also took the same set of commonality proportions as are given
in column 1.0 of Tab1e62.3, relegated them to the uniquenesses acco?ding to
our theory called T7* in the previous seétion, and then scaled these
‘proportions by increments of .1, ranging from ll to 1.0. Eéch o;e of
ﬁthese yielded 3-aamissib1e solutioﬁs which, upon exémination,were.found to
have the same regressor values ;cross the different RSQ(X1X£%3)'9. One
solution was the identity matrix, another had'a .96 in the r 12 location

and zero's elsewhere while the third sclution had a .96 in the ¥ 13 position

and zero's elsewhere.

From these two sets of reéults it would appear that if a set of _:
solutions. can be found for fixed commonality proportions and one valde of
an RSQ(X1X9X3), then they can aiso be found forlneighporing ;nd even
rquite distant RSQ(X;XoX5) values. There is nothing astounding aﬂbut tﬁese
resélts for they foliow directly from the algebra of the algor_;hm as set
forth in Agpendix A. 'However, these latter statements are so 6h for
commonality proportions that are all positive. It seems obvious that if ,
some of the proportgons are negative while others are positive, and, if ‘
both increase in their absolute magnitudes, then a poinF (or value of

RSQ(X1X2X3)) will be reached beyond which admissible solutions cannot be

\

obtained.

3. Three Variable Reversé-Com;onalityAfor Varying Levels of Unique Variation
In the preceding sections we examined results when: the level of explained

variance was held constant and the relative proportions of the variables

were manipulated; and,when the relative proportions were kept fixed and the

level of explained variance was systematically varied. An analyst may also

»

*This is the theory that SCH factors sﬁould‘ﬁgve only their unique value
but, that we don't know how to split-up the higher order commonalities
and, therefore,a random rationale is adopted. . .

<5 ‘
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. s j ~
want t$ examine how large or small a unique value a variable may éake on

and still yield an admissible solution. For example, in the equation

(12)  RSQ(Xy) = C(X;XpX,) + C(X1Xp) + C(X1X3) + U(Xj)

the empirical value for U(X;) can be made to take on progressively larger

or smafler values. Such a manipu;ézzzz will aiter not only the RSQ forx

that variable but also the RSQ for all three variables combined (as can be
seen from equation il in the‘introductory section). In a sense tﬂis kind

of gnalysis'tests how large or ‘how small a relationship one variable might
have with a given dependept v;riable and still be consistently related{;g
other regreéqpr variables. For this example we have chosen to reduce the
uniqye value of one variable to see to what extent thi; reduction affects

the ¢verall results.

1

In Table 3 we have systematically reduced the size of the unique
value for variable X3, which represents the set of School factors (SCH).
The first set of columns in the uppermost part of Table 3 gives the set of

transformations, as follows:

Tl - this is a simplification of the observed commonalities
and is included for purposes of -comparison with the

suceeding transformations. In previous sections it has

been called T1.

T20 - the unique value for X3 in Tl is reduced by .05 while

all other values are kept cons'tant .

' ¢ 1
T21 ~ the unique value for X3 in Tl is reduced by .10 while

all other values are kept céonstant.
£, .

<6 - :

L 4
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T22 ~ the uhique va;ue for X3 in T1 is set equal to zero

while all other values are kept constant.

For each of these transformations the algorithm .indicated that there
‘was only one admissible solution. In the center of the table we can observe
the frend in theée solutions. The correlations between variables: 1 and 2,

1 and 4; and, é/and 4 remain the same across the diffeileut tc¢ansformations

£7@nd this is to be expected since the coefficients foI these variables were

not manipulaged.° The correlation betweeq vgriables 1 and 3 increased
spbstaPtiaily and this increase can be attributed to the fixed second

. order coefficient,(C(Xlis)) and the fixed third order coefficient (C(X1X2X3)5.
In a sense, as the u&ique variability of a variable is reduced but its common

‘variability kepttfixed,.itskcorrelation,with the other variables must of

necegsity, increase. This trend also occurs for the correlation between

.- -
1

'variables 2 and 3, hut ' to a‘lesser extent. The correlation between variables
3 and 4 decline progressfvgiy, which is to be expected since this is the

\

relationship we manipulated when we reduced U(X3).

It is perhaps of even greater interest to examine the trend in the
regression coefficients fo; these solutions. The coeffieient for variable
1 ghows a progressive increase, that for variable 2 stays about the same

while that for variable 3 declines appreciably but does not become zero.

i
Clearly then School factors derives a portion of its explanatory power

from its relationship with the other regressor variables.* /

- % We also conducted a series of analyses in which the second order coefficient
for variables 2 and 3 (viz. C(X5X3)) was made increasingly negative while
the other values were kept constant. These analyses did not yield any !
admissible solutions. However, when the negative‘coefficient for C(X2X3) .
was kept at its observed value (see Table 1. 1) and the coefficients were
uriitized and then scaled by increments of .1, from .1 to 1.0, a sin

adeissible solution was obtained for each such transformation.
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o Table 3 Reduced Unique Values and T‘heir Effects

. TRANSFORMATIONS
CoMMONALITY OBSERVED ) .
COEFFICIENTS*  STMPLIFIED (1) 20 21 22 ,
: .u(x15 .0236 .0236 .0236 .0236
U(Xy) .0307 .0307 .0307 0307
U(X3) .1149 .0649 .0149 "o
C(X;X5) .0583 - .0583 L0583 .0583
) c(X1X3) .1025 1025 .1025 .1025
C(X,X3) 0 0 0 0
C(X1XoX3) .1117 1117 R L ¥ 1117
RSQ(X;X;X3) 4417 .3917 - .3417 .3268
NUMBER OF - /

SOLUTIONS - - 1 : 1 1 1
* f

' REGRESSOR~REGRESSAND CORRELATIONS

TRANSFORMATIONS
‘ OBSERVED
* SIMPLIFIED (1) 20 21 22
12 .5556 .5556 .5556 5556
13 .5235 ° \ .5944 .7252 .8505
14 5442, 5442 5442 5442
23 - .2820 .3114 .3528 .3688
2% 4480 6480 L4480 .4480
. 3% .5737 .5283 .4786 4628
" REGRESSION COEFFICIENTS
B TRANSFORMATIONS
OBSERVED . )
Bt SIMPLIFIED (1) 20 21 22
1 .2146 .2301 .2732 .3489 '
2 .2158 .2195 ,2253 .2233
3 .4005 3232 .« L2011 .0837

AYARIABLES ;

- ’ 1 - Social Background (SB)
2 = Motivation (MTVIN)
3 - School (SCH) !

ERIC - 28 ,

Aruitoxt provided by Eic:
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In the next section we examine results of the algorithm for

larger numbers of wvariables.
4. Seven Variable Reverse Commonality

As the number of regressor variables increase so too do the
potential number of a&missible solutions and "their corresponding
volume of output., For example, in an analysis with 4 regressor
variables one resolution yielded 16 admissible'solutions% for
5 regressois one resolution yielded 52 admissible solutions; aﬂd, for
6 regressors ; single resolution yielded 193 admissible solutions. .
Needless to say, we have no desire Eo report on that mahy results.
However, a certain number of difficulfies do arise when working with a

large number of regressors and since the number of admissible

<

'a&tutions were fairly low for our 7 regressor case we have chosen to
deil with some of these results in this section (seven regressor

variables happens also to be the mé;imum number that the algorithm

can currently accomodate).




i

developed in Mayeske, et.al., 1972. They are:
i

i
i
{
+

The variables used in these analyses are composites or indices as

1, Socio-~Economic Status )

2. Family Structure and Stability N

‘ [
{ -

3. Ethnic Gron Membership

Expectationé for Excellence
!

3 Iy -
./ /
- /

.G,
5. Attitude Toward Life

‘6. .Study Habits /
7. School Factors (the student body's Achievement Level) |
8. -iIrdividudl ‘Student *Aéh:l(:evement ‘ j
\ |

ﬁth is the

The first 7 variables are uséd as regressors while ‘the eigt
' | -
regressand (or dependent variable). ! ’
i

Firét we shéuld recall that with 7 variables one obtains 127 different

commonality coefficients (2™-1 where m is the number of variables). This
is usually too large a number to work with even if the volume‘éf output were
) -
f' the 7 variable

small. However, we decided to submit our observed results o ’
: i

commoﬁality analysis to the Reverse Commonality algorithm to/éee if it would
yiel& a single admissible solution. Actua}ly, it yielded 3/a§missible /
solutions all very similar to one another and to the obser eq‘correlatibns,
save for a few variations in the magnitude §f the correlafion between

variables 4 and 5 and, between variables 4 and 6, as cag/be seen from Table

4,1, The regression coefficients obtained from /

30 ,

/
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Table 4.1 Regressor and Regressand ‘Correlations Reprocduced from Seven
Variable Commonalities

) " REPRODUCED FROM REPRODUCED FROM SIMPLIFIED
OBSERVED COMMONALITIES COMMONALITIES
r OBSERVED 1 2 3 1 2 3 4

12,3567 .3574 3574 .357@ .3703 .3703 .3703 .3703

N : 13 .3714 .3719 3719 3719 .3748 3748 - 3748 3748
14 .2787 2793 .2793  .2793 $2740 L2740 <2740 <2740

15  .3736 .3739 .3739 .3739 .3795  .3795 .3795 .3795

! 16 .3968 73972 .3972  .3972 L4120 L4120 C L4120 4120

. ] 17 .4346 4345 L4345 L4345 L4472 L4472 .4&72 4472
\//, 18 .4973 4974 4974 4974 4850  .4850 4850 +4850
23 .2999 .3007 .3007 .3007 .3019 .3019 " .3019 3019

‘ 26,3725 - .3734 .3754 3734 .3839 .383¢°  .3839 .3839
éS ©.4707 |, L4707 L4707 T L4707 4854 4854 4854 4854
26 .4723 4715 L4715 .4715 4967 .69&7 4967 4967
27 2908 .2894 .2894  .2894 .3032  .3032 .3032 .3032
28 3259 .3260 .3260 .3260 ".3028  .3028 " .3028 .3028
34,1684 .1678 .1678 .1678 .1550 .1550 1550 .1550

", 35 .2253 2253 .2253 2253 L2146 ,.2146  .2146 2146 Z‘
3 .2219  .2217 .2217 .2217  .2101 .2101  .2101  .2101

37 .6165 L6173 .6173 .6173  .6420 .6420  .6420  .6420

g : 38 L4908  .4909 .4909  .4909 L4784 L4784 4T84 L4784

, 45 5172 L5143 L7782 5143 .5699 .7148  .5699 7148
LT 46 489  .4876 .4876 .8264  .5451 .5451  .7639  .7639
47 .15%  .1553 .1553 .1553  .1562 .1562  .1562  .1562

48 .2552  .2546 .2546 .2546  .2356 .2356  .2356  .2356

, 56 .6623°  .6603 .6603 .6603  .7112 .7112 7112 7112

. 57 .2321  .2312 .2312 .2312  .2306 .2306  .2306  .2306

58 3820 .3818 _;38%9 +.3818 +3635 .3635 .3635 »3635
67 .2331 .2327 .2325 .2327 <2344 ‘.2344 . 22344 <2344
68 +3674 .3670 ‘.3670 .3670 .3523 .3523 .3523 .3523
78 +5674 .5673 .5673. .5673 .55;8 +5598 5598 .5598

* The variables are: 1-Socio-Economic Status; 2-Family Structure and
Stability; 3-Ethnic Group Membershin; 4~Expectations for Excellences

. S-Attitude Toward Life; 6-S8tudy Habits; 7-School Factors; 8-Individual

]Z l(:‘ Student Achievement

- ERIC a1

- .

R -
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Table 4,2 Standardized Regression Weights from Observed and Reproduced

REPRODUCED FROM OBSERVED

Commonalities for Seven Variables

REPRODUCED FROM SIMPLIFIED

: COMMONALITIES COMMONALITIES
B* OBSERVED 1 2 3 1 2 3 4
1 .2116 2116 .2120 .2091  .2084 .2079  .2057  .1998
2 .0050 .0056  .0086 .0068 -.0203 -.0189 =-.0205 -.0256
3 .1626 1622  .1632 .1636  .1527 .1529 .1535 1542
4 .0104 .0103 ~.0738  -.0625 ~.0071 =-.0496 =-.0490 -.1140
5  .1328 1332 1957 .1335  .1377 .1677 .1382 1777
6  .0766 0762 .0747 .1333  .0737 .0753 .1082  .1350
7 .3235 .3235  .3208 .3213  .3268 .3258 .3259  .3244
RSQ .4517 4516 4537 4528  .4253 4266 4262 4298

* The variables are:

1-Socio—-Economic Status; 2-Family Structure and

*Stability; 3<Ethnic Group Membership; -4~ Expect2tions ‘for Excellence;
S5-Attitude Toward Life; 6-Study Habits; 7-Schuol Factors; 8~Individual
Student Achievement
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these solutions, given in Table 4.2, show that they tend to be very similar

_ to ‘those cobtained from the observed correlations save for variable 4

(Expectations for Excellence) which takes on small negative values and
variables 5 (Attitude Toﬁard Life) and 6 (Study Habits) which take on
slightly larger valqés for the second and third solutioms, respectively.

Next, in order to reduce the shegr number of coefficients, we set
equal to zero any empirical value that had ze?o's for its first three
decimal digits.* The algorithm indicated that there were four admissible
solutions for this simplified set of coefficients. The_correlations and
regression coefficients obtained from these solutions are given in the
last four ;Blumﬁé of Tables 4.1 and &.2 respectively. Inspection of
these values shows‘them to be virtually identical to one anrother except
for the correlations between variabIés 4 ;nd 5 and variables 4 and 6.
These lat;er‘alternate in taking on higher.or lower values. Aithough
these correlations are not very different from one another they do differ
énough from the observed correlations to result in somewhat different'
values for some of the regression coefficients, as can be seen from Table &.2.
This is especially so for variabies 2 (Family Strucguie) and, 6 (Study
Habits)., It appears to be thése attitudinal and motivational variables
then that show the gfeateét sensitivity to simplification of the commonalities.

In an attempt to further simplify the number of empirical values one had
to work with we set equal to zero any of these commonalities that had zero's

i .
in the first two decimal digits.** For these simplifications the algorithm

indicated that there were not any admissible solutions.+ We then took these

*e.g. .0004 would be set to zero but.0040 would not.

**e.g. .0040 would be set to zero but .04000 would not.

+However, when the criterion was relaxed to a value of 1.0, the algorithm
indicated that there were 20 admissible solutions (see Appendix A), Whether

or not it is desirable to relax this criterion will depend upon the analysts®
objectives.
' 33




further simplified values, split them up and allocated them to the unique
Yalues in two.distinctly different ways. For each of thgse the algorithm
indicated that there were 15 q@missible solutions. We shall not. dwell on
the nature of these resﬁlts other than to néte that éhe regressor correla-
tions often varied over a considerable range. Some of them assumed values

in the range from zero to as high as .8 or .9.

34 :
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5. Summary ]

1

In this-paper Qe have examined the fe;ults'of an algorithm which
is designed to take a set of commonality coefficients, either real or
manipulated,and,if possible,produce one or more sets of regressor
correlations that are consistent with them; A number of diffe?ent ways
of resolving the higher order commonality values into their lower orders
were tried and the number and nature of solutiéns generated from them
were examined)for their ﬁeaningfulness and variability. In genmeral it
was found that this could be a meaningful exercise because it allows an
analyst tg test his assumptions about the nature of the confoundiné to
see if a solution can be obtained. If one cannot be obtained then his
assumptions must be revised. But if one can be obtained, then he can examine
them to see which kinds of variables have the greatest sensitivity to the
assumptions. The resulting output also allows one to gauge the variabi;ity
of regression'?oefficients that will satisfyythe same set of commonality.

values and the effectiveness of the regression systenm,

This technique called "Reverse Commonality' is best suited for an
interactive computing arrangement so that an analyst can use it rapidly
in a sequential manner. Since,for a large number of variables the sheer
volume of commonality values becomes unmanageable and, since a number of
different wa¥s are available for resolving the confounding, an algorithm

is needed which uniquely/resolves the higher order values according to
/

one's assumptions,
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- Reverse Commonality (REVCOM) '

-

1. Discussion

Let us assume that there is a variable y which has been used
in a regression analysis in which variables xj(j-l,Z,...,m) ‘have

been used as predictors. Let us further assume that the statistics
i /7

available to us from the regression analysis is.either the common=-
alities or squared multiple correlations of y with” each possible

combination of predictors. The signs of the correlations of indi-~-

vidual xj with y are known. Our problem is to compute the inter-
‘1

correlations among the predictors from the known simple and multiple\

>
-

correlations.

This problem must have at least one valid solution if the
known coefficients were computed from reil data. There need not be

s unique solution, however, and in the' two predictor case there
- l\ .

will ordinarily be twd solutions, Early experience with test

L

problems indicates that theré are not very many solutions for

multi~predictor systems. ‘{f artificial commonalities or squared

multiple correlations are supplied tﬂen there may be ng solutions
i{ndicating that the. correlations are not fonsistent with any
possibfc set of real;d?ta.

This paper presents an algoritﬁﬁ for computing &ll possible
interp;edictor correlation matrices from a given vector of common-
alities and the signs of the simple correlations beétween y and the

xj; Commonalities can be simpl& converted to squared simple and
multiple correlations. We will use only the more familiér nultiple
. *

correlation coefficients for discussion here.
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Discussion ‘ © ' \
-The information is & vector of all possidle squared multiél.

cbrr;lations of a dependent v;ti{blt y with the indegendent~ |

variables x (jil 2,..(..m) which is crea;cd fro; the commonalities.

There are 2"-1 such correlations which will be 1ndicnted by subscripts
2 2 2° 2 2 ‘2

y123

oo.R

yl23,..m’ .
Th¢ signs of the simple correlations Ty = \R2 are also knowa. .

T

We wish to compute the simple correlations r,

j(i-l,Z,..m-l; I=1+1,

i+2,....m) among the dependent variables,

?hefe are m({n-1)/2 such

‘correlations. /R S

The general strategy is to ‘compute the possible values of 1::'..1

'51, ;3, and Rzii; then to check these fbr

chhm'xraxconsd;tint with' r
consistency with each other known correlation, then each, other pair
of correlations, and sc'forch un€il they are demonstrated to be
consistent with all other variables colieccively: If a possible tij
does not pass every sucﬁ.tesf it 1is eliqinated from further con-
sideration, ' .

.The firsc step 1is to compute the 1nicia1 set of possible values.

for the squared, mulciple correlation for prediccing y from xy and xj

may be written

2 2
+ -
g2 o Iyt t Ty 7 PeTyTey
yij 2
l-rij
which may be solved for 1:1‘1 by
. 2 2 2 2 2 4
. + - R - R
' Zryityy X V'j’yiryj 13 (Ryg¥T793) = Ryy,
r L e
] ij B Rz .
yij .
1
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Depending on the value of the value inside the radical, rij miy
. N H

have either no Qolution, one solution or two solutions. If-the .

value qf the radicand is negative there is no possible rij that

could combine with r_ . and r;J to create such a !;ij and thus the

yi

given values could not come from real data. In the rare cass

I~

that the radicand is zero, r is unique. If the radicand is ¢
. M 1

- : 13
’ i
positive then there are exactly two solutions which we will refer to
S, - . ¢

as ri; wvhere 511 = + or ~ depending ‘on the sign of the radical.
s

3y computing ri;j‘ for all 1 and j we have Fomputed all tij'

' VA
. that are possible in two variable prediction., Sinte there are up

-to 2 possible values for each T4y there are zm(mﬁl)/z

¥

possiﬂie

combinations. of. r thus: the, same number of.intercorrelationx

13
matxices which must be considered. Many of these may be eliminated
through evaluation of ﬁigher crder relationships. Tohinvestigate
higher order relat;onshibs we have two checks: . )

- (1) Are the intercorrelations internally consistent? and

. (2) TDoes this combination of intercorrelations produce the
. correct higher/order multiple corxelation?

These two question§ can be answ;red by standard multiple re-~
g}ession techniques. fhe SWP operator (B;;ton (156%5)*15 a simple
method of implementing these computations. Ba;ically, the proccqi_
begins with 3 predictor reg;essions in which case there are three
off-di}gonal co-relations and up to 8 possible combinations ?f

intercorrelations. Each is examined in order by forming a 4x&

correlation matrix (including the 3 independent variables and'y)

f-s,'*u
and sweeping out the independent variables. If the SWP operator
» -




e

Lo : /
encounters a2 negative pivot then this combination is internally

-

inconsistent. If the multipleycorrelation of these xJ

not the known value within a tolerance limif, then this combination

‘does not fit the pfoblem and is rejected. ?fter computing the

513 |
13 that are in at least one

acceptable conbination ace retained. Our kperience indicates’
13

‘that m;ny ot the potential correlations are lost at this point, 1If

.and y is-

(up to) 8 combinations only the r

no combination is acceptable then there can\'be no solutfon to these

problems and thus the given multiple correlations cannot come from

“real data. v /‘

After trying all 3 variable combinations, all 4 variable, §
v;riablg, and higher order combinationi are tried until finallytthe
n variable regressiorn is'pexformed.. At this point the ;}oblem is
solved since the remaining matrices have been demonstrated to have
a positiGe determinant.and.fit'all giftn multiplo correlations.

1f theealgorithm-worked through all possible combinations tho
comnuter costs miéht be prohibitive for'lhrge m, * The algorithm
saved oonsiderable time by app aching the problem by successive .
elimination. The 3 variable phase usually reduces the potential °m

1;j substantially so that there are usually got too many 4 b
variable combinations worth trying; and.the 4 variable copbination

[ 5

does the same for the 5, and so.forth.

. A

*Beaton, A. E. The Use of "Special Matrix Operators in L
Statistical Calculus, Research Bulletin 64-51, -
Educational Testing Service, October, 1964.

~
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2. REVCOM PROGRAM FLO* s /
(1) Read in problem control card (if blank éard to to (8))
. NI = # of independent varialbes,
' . ’ ) - NV f NI+l (program adds on the dependent variable).
(2) " Read in signs to be used for the independent vs dependent
correlations, |
(3) call subroutine 'CRSQ'. ‘ . ;
(a) Read in inputted 'commonality table. . :
(b) Compute and print all possible R squares (ZNI—l).
. (c) Return :to main progranm.,
(4) _ Develop the two-valued NVXNV cortelation matrix uging the
R square table. “Report any discrepancies,
(5) 1If any cortelation cannot be developed go to (1). . ;
(6) Call subroutine 'ELIM' k
‘ {4&) Set NVB = 3, ,
_ //r;”fﬁxliéelect‘one‘combination of NI variables taken NVB
iﬂwf’;,r——ﬂ“"fﬂﬁpl at a time, If all combinations computed go to (f).

(c) For these seiected NVB variables set up all possible
correlation matricea from the two~-valued matrix
compated in step (4) . .Compute the R square for
each of these matrices,

(d) 1f one of the two values for any of the NVBx(NVB+1)7/2 |
possible correlations never gave an R square solution/ ;
that checked against the table .computed in step (3.b), ;-
eliminate it. If both values are eliminated stop the

4

program.
(e) I£ NVB=NI print each matrix that checks against the
; ;o , ‘R square table along with its inverse and label it
. ' a 'Goop’ case.,

; (£) Go to (b).

(g) Print out the two valued correlation matrix showing
~ which of the NIx(NI#1)/2 x 2 values have been
elimated by the NVB drder elimination.

v




4 e ' «
' 4
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‘ l « 0
N .t
(h) NVB=NVB+l 1f NVB<NI go to (b). )
(1) Return to main program, '
(7) .Go to (1). . .
Fo. (8) END.- .
I 4
o




3. REVCOM Program Instructions

Purpose -~ Given & commenality table derive the original

- correlation matrix,

Inpuc
1) Control Card
Sélé; JVar. Explanation
‘s ‘ N < 7 Number of'Independent

,nxiriables in the commonality

{ﬁble. -

6-60 Title - :Any heading information.

2) 5s£gn*conc£ol card and X square tolerance

. Cols, Var. ) Explanation
1 '+ or '-' (This is the sign

of the correlation between the
.. K ’ _ first independent var., and the
dependent var.
2 . ;+', or '-' (sign of the
cofé;}ation between the second
}ndependent var. and the de~ -
pendent var,
'$', 0or '~' (3rd sign)

41, or '~ (4th sign) o

Koo dn w

'+', or '-' (Nth sign)

o

.r“ R -aacd ae 1.7
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/f Cols. '// Var. Explanation
[opﬁ&onal] 11-20 - . TOL | This is tée largest absolute

-

devittion!allowod when checking

the derivé@ R-squares against

T the R-squhre computed from the
. |

conmonalﬂty table., If columns

. 11-20 art left blank the pro-

gram will use a default value

o

Of 00050 !

emo————

3) Commonality Table. ) /Q ‘ . A

,Ihe“coomonali;y table consisto of 2"-1 input cards. There
. 48 one card input for each‘uniqueness and each commonality
combination. The card contains the commonality variable
numbers identifying the combination as well as the
4 . ) commonality value. Thé first order commonmition are reaé

in first, followed by the possible second order,. third etc,

rX. Four variable Problem - (2" 1 = 15)
1 ~XXX
2 XXX
3 XXX ,
4 XXX
12 XXX
D) 13 XXX
. 14 . xXxXx
‘ . 23 xXX
: d 24 xXX
. 34 - x%X
' 123 xXX
124 . XXX
134 . XXX
234 xXXx
- X234 XXX




B vt —

Cols., Var, Explanation "
1-7 ' .

Commonality Level

. 11-20 Commonality Value (F10.4)

If another problem 1s to be run repeat steps 1-3, If this
is the last problem insert a blank card after the input to bring
t

the .problem to a normal termination.

. ’
.
*
.,
.
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